Morphological and quantitative evaluation of mucous acini of the sublingual gland of chronic diabetes and quercetine supplemented rats

Authors

  • Éder Paulo Belato Alves
  • Stephanie Carvalho Borges
  • Juliana Crivoi Fiori
  • Aline Rodrigues Lazarin
  • Marcello Arnaldo Nunes Prado
  • Lucas Henrique da Costa
  • Angela Maria Pereira Alves

DOI:

https://doi.org/10.48075/aes.v1i1.23679
Supporting Agencies

Keywords:

diabetes mellitus, quercetin, sublingual gland

Abstract

Chronic diabetes causes several morphofunctional changes in the parenchyma of the salivary glands due to increased oxidative stress and also due to metabolic, vascular and neuropathic complications. Whereas salivary glands are crucial for maintaining the functional and structural integrity of the oral cavity; we aimed to evaluate the morphological and quantitative parameters of mucous acini of the sublingual gland of rats with chronic diabetes and supplemented with quercetin. Twenty rats were randomly assigned to four groups (n = 5): Normoglycemic (C); Quercetin supplemented normoglycemic (CQ); Diabetics (D) and Quercetin supplemented diabetics (DQ). CQ and DQ rats received quercetin (200 mg.Kg-1 body mass) in water for 120 days. The data obtained from the quantitative analysis showed no significant difference in acinar density between all groups analyzed (p> 0.05). Morphometric analysis revealed a higher mean acinar area in group QC compared to the other groups (p <0.001). In the condition of diabetes, quercetin supplementation did not alter the morphochemical parameters of the mucous acini of these glands. The largest average acinar area observed in rats from the quercetin-supplemented normoglycemic group (QC) could be related to the ability of this antioxidant to regulate cellular, metabolic and gene expression processes.

References

Moore PA, Guggenheimer J, Etzel KR, Weyant RJ, Orchard T. Type 1 diabetes mellitus, xerostomia, and salivary flow rates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001. doi:10.1067/moe.2001.117815.

Alves CDAD, Aguiar RA, Alves ACS, Santana MA. Diabetes melito: Uma importante co-morbidade da fibrose cística. J. Bras. Pneumol. 2007. doi:10.1590/s1806-37132007000200017.

Rusthen S, Young A, Herlofson BB, Aqrawi LA, Rykke M, Hove LH et al. Oral disorders, saliva secretion, and oral health-related quality of life in patients with primary Sjögren’s syndrome. Eur J Oral Sci 2017. doi:10.1111/eos.12358.

López-Pintor RM, Casañas E, González-Serrano J, Serrano J, Ramírez L, De Arriba L et al. Xerostomia, Hyposalivation, and Salivary Flow in Diabetes Patients. J. Diabetes Res. 2016. doi:10.1155/2016/4372852.

Okamoto A, Miyachi H, Tanaka K, Chikazu D, Miyaoka H. Relationship between xerostomia and psychotropic drugs in patients with schizophrenia: evaluation using an oral moisture meter. J Clin Pharm Ther 2016. doi:10.1111/jcpt.12449.

Gomes LF, Fernanda SI, Lopes F. Salivary flow and xerostomia in premenopausal and postmenopausal women (Estudo sobre o fluxo salivar e xerostomia em mulheres na pré e pós-menopausa). Pesqui Bras Odontopediatria Clin Integr 2007.

Frydrych AM. Dry mouth: Xerostomia and salivary gland hypofunction. Aust Fam Physician 2016.

Lilliu MA, Solinas P, Cossu M, Puxeddu R, Loy F, Isola R et al. Diabetes causes morphological changes in human submandibular gland: A morphometric study. J Oral Pathol Med 2015. doi:10.1111/jop.12238.

Mednieks MI, Szczepanski A, Clark B, Hand AR. Protein expression in salivary glands of rats with streptozotocin diabetes. Int J Exp Pathol 2009. doi:10.1111/j.1365-2613.2009.00662.x.

Pereira Alves1 AM, Cristina Buttow N, Christmann C, Yamamoto E, Medeiros J, Mello DE et al. Resveratrol atenua a atrofia e a perda de ácinos da glândula salivar parótida de ratos com diabetes crônico resveratrol reduces losses and atrophy of acinar cells of parotid gland of diabetic rats. 2017; 30: 6–10.

Markopoulos AK, Belazi M. Histopathological and immunohistochemical features of the labial salivary glands in children with type I diabetes. J Diabetes Complications 1998. doi:10.1016/S1056-8727(97)00047-0.

Carda C, Mosquera-Lloreda N, Salom L, Gomez De Ferraris ME, Peydró A. A structural and functional salivary disorders in type 2 diabetic patients. Med Oral Patol Oral Cir Bucal 2006.

Mahay S, Adeghate E, Lindley MZ, Rolph CE, Singh J. Streptozotocin-induced type 1 diabetes mellitus alters the morphology, secretory function and acyl lipid contents in the isolated rat parotid salivary gland. Mol Cell Biochem 2004. doi:10.1023/B:MCBI.0000028753.33225.68.

Isola M, Cossu M, Diana M, Isola R, Loy F, Solinas P et al. Diabetes reduces statherin in human parotid: Immunogold study and comparison with submandibular gland. Oral Dis 2012. doi:10.1111/j.1601-0825.2011.01884.x.

Negrato C, Tarzia O. Buccal alterations in diabetes mellitus. Diabetol. Metab. Syndr. 2010. doi:10.1186/1758-5996-2-3.

Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 1998. doi:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S.

Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr Rev 2002. doi:10.1210/er.2001-0039.

Shirpoor A, Khadem Ansari MH, Salami S, Ghaderi Pakdel F, Rasmi Y. Effect of vitamin E on oxidative stress status in small intestine of diabetic rat. World J Gastroenterol 2007. doi:10.3748/wjg.v13.i32.4340.

Zhu H, Wang Y, Liu Z, Wang J, Wan D, Feng S et al. Antidiabetic and antioxidant effects of catalpol extracted from Rehmannia glutinosa (Di Huang) on rat diabetes induced by streptozotocin and high-fat, high-sugar feed. Chinese Med (United Kingdom) 2016. doi:10.1186/s13020-016-0096-7.

Formica J V., Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995. doi:10.1016/0278-6915(95)00077-1.

Ulusoy HG, Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2019. doi:10.1080/10408398.2019.1683810.

Erden Inal M, Kahraman A. The protective effect of flavonol quercetin against ultraviolet a induced oxidative stress in rats. Toxicology 2000. doi:10.1016/S0300-483X(00)00268-7.

Hollman PCH, Katan MB. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 1997. doi:10.1016/S0753-3322(97)88045-6.

Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P et al. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 1993. doi:10.1016/0006-2952(93)90371-3.

Rigo A, Guterres S. O potencial antioxidante de vegetais no combate ao envelhecimento cutâneo. Infarma 2002; 14: 69–73.

Knaś M, Maciejczyk M, Daniszewska I, Klimiuk A, Matczuk J, Kołodziej U et al. Oxidative Damage to the Salivary Glands of Rats with Streptozotocin-Induced Diabetes-Temporal Study: Oxidative Stress and Diabetic Salivary Glands. J Diabetes Res 2016. doi:10.1155/2016/4583742.

Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr. Opin. Clin. Nutr. Metab. Care. 2002. doi:10.1097/00075197-200209000-00016.

Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 2018. doi:10.1016/j.biopha.2018.09.058.

Obrosova IG, Van Huysen C, Fathallah L, Cao XC, Greene DA, Stevens MJ. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J 2002. doi:10.1096/fj.01-0603fje.

Moreira CR, Ferrari F, Alves ÉPB, Bin L, Machado J, Dalzotto E et al. Infiltração Linfocítica no Parênquima da Glândula Salivar Parótida de Ratos Diabéticos Suplementados com Acetil-L-Carnitina. Saúde e Pesqui 2014.

Arana V, Katchburian E. Histologia e Embriologia Oral - Texto, Atlas, Correlações Clínicas. 3rd ed. Rio de Janeiro, 2012.

Morris PA, Prout RES, Proctor GB, Garrett JR, Anderson LC. Lipid analysis of the major salivary glands in streptozotocin-diabetic rats and the effects of insulin treatment. Arch Oral Biol 1992. doi:10.1016/0003-9969(92)90105-H.

Anderson LC, Garrett JR, Thulin A, Proctor GB. Effects of streptozocin-induced diabetes on sympathetic and parasympathetic stimulation of parotid salivary gland function in rats. Diabetes 1989. doi:10.2337/diab.38.11.1381.

Marunaka Y, Marunaka R, Sun H, Yamamoto T, Kanamura N, Inui T et al. Actions of quercetin, a polyphenol, on blood pressure. Molecules. 2017. doi:10.3390/molecules22020209.

Miltonprabu S, Tomczyk M, Skalicka-Woźniak K, Rastrelli L, Daglia M, Nabavi SF et al. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem Toxicol 2017. doi:10.1016/j.fct.2016.08.034.

Rauf A, Imran M, Khan IA, ur-Rehman M, Gilani SA, Mehmood Z et al. Anticancer potential of quercetin: A comprehensive review. Phyther. Res. 2018. doi:10.1002/ptr.6155.

Shirai M, Yamanishi R, Moon JH, Murota K, Terao J. Effect of quercetin and its conjugated metabolite on the hydrogen peroxide-induced intracellular production of reactive oxygen species in mouse fibroblasts. Biosci Biotechnol Biochem 2002. doi:10.1271/bbb.66.1015.

Alves ÂMP, Alves ÉPB, De Mello JM, Zanoni JN, Bespalhok DDN, Moreira CR et al. Avaliação dos efeitos da suplementação com vitaminas E e C sobre os ácinos da glândula parótida de ratos diabéticos crônicos: análise morfológica e quantitativa. Rev Bras Ciências da Saúde - USCS 2016. doi:10.13037/ras.vol14n47.3533.

Takahashi A, Inoue H, Mishima K, Ide F, Nakayama R, Hasaka A et al. Evaluation of the effects of quercetin on damaged salivary secretion. PLoS One 2015. doi:10.1371/journal.pone.0116008.

Li L, Wang H, Hu L, Wu X, Zhao B, Fan Z et al. Age associated decrease of sialin in salivary glands. Biotech Histochem 2018. doi:10.1080/10520295.2018.1463453.

Atkinson JC, Travis WD, Pillemer SR, Bermudez D, Wolff A, Fox PC. Major salivary gland function in primary Sjogren’s syndrome and its relationship to clinical features. J Rheumatol 1990.

Guyton A, Hall J. Tratado de fisiologia médica. 13th ed. Rio de Janeiro, 2017.

Hand AR, Weiss RE. Effects of streptozotocin-induced diabetes on the rat parotid gland. Lab Investig 1984.

Kamata M, Shirakawa M, Kikuchi K, Matsuoka T, Aiyama S. Histological analysis of the sublingual gland in rats with streptozotocin-induced diabetes. Okajimas Folia Anat Jpn 2007. doi:10.2535/ofaj.84.71.

Tarahovsky YS, Kim YA, Yagolnik EA, Muzafarov EN. Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. Biochim. Biophys. Acta - Biomembr. 2014. doi:10.1016/j.bbamem.2014.01.021.

Kim SK, Cuzzort LM, Mckean RK, Allen ED. Effects of Diabetes and Insulin on α-amylase Messenger RNA Levels in Rat Parotid Glands. J Dent Res 1990. doi:10.1177/00220345900690081001.

Published

10-02-2020

How to Cite

ALVES, Éder P. B.; BORGES, S. C.; FIORI, J. C.; LAZARIN, A. R.; PRADO, M. A. N.; COSTA, L. H. da; ALVES, A. M. P. Morphological and quantitative evaluation of mucous acini of the sublingual gland of chronic diabetes and quercetine supplemented rats. Acta Elit Salutis, [S. l.], v. 1, n. 1, 2020. DOI: 10.48075/aes.v1i1.23679. Disponível em: https://saber.unioeste.br/index.php/salutis/article/view/23679. Acesso em: 24 aug. 2024.

Issue

Section

Artigos Originais