KNOWLEDGE OF THE MATHEMATICAL HORIZON IN THE PRINCIPLE OF MATHEMATICAL INDUCTION IN A HIGHER-LEVEL CONTEXT

Autores/as

  • Leticia Sosa Guerrero
  • María del Rosario Sandoval Cedillo

Palabras clave:

Horizon Content Knowledge, Connections, Teaching practice, Mathematical Induction, Undergraduate level, Higher education.

Resumen

This research presents a theoretical problem that refers to the recognition of a theoretical model that describes the mathematical connections that are executed in the principle of mathematical induction. The purpose of this article is to highlight the connections from the subdomain of Horizon Content Knowledge (HCK) from the Mathematical Knowledge for Teaching (MKT) model. The methodology proposed is an intrinsic case study, where two higher-level teachers in the area of mathematics are selected; and an interpretation and triangulation of data where recorded classes are examined, semi-structured interviews are applied and field notes are evidenced. Among the actions for the assessment of the research, the analysis of the HCK subdomain is deepened in its three dimensions (practices, themes and values), as well as the design of conceptual maps in the three types of connections of the HCK (intraconceptual, interconceptual and temporary). Among the main results, a large number of HCK indicators are presented that the teachers demonstrate in the principle of mathematical induction, which reflect the impact on the curricular contents in the area of science, which from the perspective of teacher training is relevant for the exercise of qualitative analysis placed in a mathematical context.

Citas

BALL Deborah Loewenberg; THAMES, Mark Hoover; PHELPS, Geoffrey. 2008. Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59 (5), p. 389-407, 2008, p.403.

BALL, Deborah Loewenberg.; BASS, Hyman. With an eye on the mathematical horizon. Know mathematics for Teaching to learner´s mathematical futures. En: Paper presented at the 43rd Jahrestagung der Gessellschaft fur Didaktik der mathematik, Oldenburg, Germany, p.6, 2009.

BORTOLI, Marcelo de Freitas; BISOGNIN, Vanilde. Conexões Matemáticas no Ensino de Progressões Aritméticas de Ordem Superior. Bolema: Boletim de Educacão Matemática, v. 37, n.75, p.250-270, jan., 2023, p. 252.

JAKOBSEN, Arne; THAMES, Marck Hoover; RIBEIRO, Miguel; DELANEY, Sean. Using Practice to Define and Distinguish Horizon Content Knowledge. En: ICME (Ed.), 12th International Congress in Mathematics Education (12th ICME). Seúl: ICME, 2012, p. 4635 – 4644, p. 4636.

MARTÍNEZ, M.; GINE, Climent; FERNANDEZ, L.; FIGUEIRAS, Lourdes; EULOFEU, Jordi. El conocimiento del horizonte matemático: Más allá de conectar el presente con el pasado y el futuro. Investigación en Educación Matemática XV, p. 429 – 438, 2011.

MONTES, Miguel Ángel; CONTRERAS, Luis Carlos; LIÑÁN, María del Mar.; MUÑOZ-CATALÁN, María Cintia; CLIMENT, Nuria; CARRILLO, José. Conocimiento de aritmética de futuros maestros. Debilidades y fortalezas. Revista de Educación, 367, p. 36-62, Enero-marzo, 2015.

REYES A. M. Conocimiento especializado de profesores en formación de primaria. Enseñanza del significado razón. Tesis Doctoral sin publicar, Universidad Pedagógica Nacional Unidad 321 Zacatecas, Zacatecas, 2018, p.62.

RIBEIRO, C. Miguel. From modeling the teacher practice to the establishment of relations between the teacher actions and cognitions. En: M. Joubert (Ed.) Proceedings of the British Society for Research into Learning Mathematics November 2008, Londres: British Society for Research into Learning Mathematics, 28(3), p. 102 – 107, 2008.

ROJAS, Nielka; FLORES, Pablo. El análisis didáctico como una herramienta para identificar los dominios de conocimiento matemático para la enseñanza de las fracciones. En: José Luis Lupiáñez, María C. Cañadas, Marta Molina, Mercedes Palarea, y Alexander Maz (Eds.), Investigaciones en Pensamiento Numérico y Algebraico e Historia de la Matemática y Educación Matemática 2011. Granada: Dpto. Didáctica de la Matemática, Universidad de Granada, 2011, p. 17 -28. p.18.

SÁNCHEZ, J. Paradigmas de Investigación Educativa: De las leyes subyacentes a la modernidad reflexiva. ENTELEQUIA, Revista interdisciplinar, n. 16, p. 91- 102, 2013, p. 95.

SHULMAN, Lee S. (1987). Knowledge and Teaching: Foundations of the New Reform. Harvard Educational Review, 57(1), 1-22. p. 11.

SHULMAN, Lee S. Those who understand knowledge growth in teaching. American Educational Research Association, 15(2), p. 4-14, 1986.

SOMINSKII, I.S. El método de la inducción matemática. Quinta edición. Editorial Limusa: Noriega Editores, 1959.

SOSA, L. Conocimiento matemático para la enseñanza en bachillerato: un estudio de dos casos. Tesis doctoral, Universidad de Huelva, Departamento de Didáctica de las Ciencias y Filosofía, Huelva, España. 2011.

STAKE, Robert E. Investigación con estudio de casos. Segunda edición. Madrid: Ediciones Morata, S.L., 1999.

VILARÓ, Ricardo. Desafíos de la formación docente ante la realidad social y la sociedad del conocimiento. En: I. Gómez, Planchart E. (Eds.), Educación Matemática y Formación de Profesores. Propuestas para Europa y Latinoamérica. Bilbao: HumanitarianNet, 2005, p. 51 – 71.

WASSERMAN Nick; STOCKTON Julianna Conelly. Horizon content knowledge in the work of teaching: A focus on plannig. For the Learning of Mathematics. 33(3), p. 20-22, 2013, p.20.

ZAZKIS Rina; MAMOLO Ami. Recoceptualizing knowledge at the mathematical horizon. For the learning of mathematics. 31(2), p. 8-13, 2011, p.9.

Publicado

24-02-2024

Cómo citar

LETICIA SOSA GUERRERO; MARÍA DEL ROSARIO SANDOVAL CEDILLO. KNOWLEDGE OF THE MATHEMATICAL HORIZON IN THE PRINCIPLE OF MATHEMATICAL INDUCTION IN A HIGHER-LEVEL CONTEXT. Espaço Plural, [S. l.], v. 20, n. 40, 2024. Disponível em: https://saber.unioeste.br/index.php/espacoplural/article/view/34066. Acesso em: 19 abr. 2025.