PREVISÃO DA PRODUTIVIDADE DO CAFÉ COM BASE EM DADOS AGROCLIMÁTICOS E APRENDIZAGEM DE MÁQUINA / FORECASTING COFFEE YIELD BASED ON AGROCLIMATIC DATA AND MACHINE LEARNING

Autores

DOI:

https://doi.org/10.48075/ijerrs.v3i1.26255
Agências de fomento

Palavras-chave:

Coffea arábica, Temperatura do ar, Déficit hídrico.

Resumo

Objetivou-se prever da produtividade do café com modelos regressivos usando dados meteorológicos em diferentes tipos de solo. O trabalho foi realizado em 15 localidades produtoras de C.arabica do Paraná. Os dados climáticos foram coletados por meio da plataforma NASA/POWER de 1989 e 2020 e os dados de produtividade do Coffea Arabica (sacas/ha) foram obtidos pela CONAB de 2003 a 2018. Para o calcula da evapotranspiração de referência (ETo) foi utilizado o método de Penman e Monteith, e o balanço hídrico climatológico (BH) de Thornthwaite e Mather (1955). Na modelagem dos dados, foi utilizado a regressão linear múltipla, em que a produtividade do C.arabica foi a variável dependente e as variáveis independentes foram temperatura do ar, precipitação, radiação solar, déficit hídrico, excedente hídrico e armazenamento de água no solo. Modelos de regressão linear múltipla são capazes de prever a produtividade do cafeeiro arábica no estado do Paraná com dois a três meses de antecedência a colheita. O elemento meteorológico que mais influencia o cafeeiro é a temperatura máxima do ar, principalmente durante a formação do fruto (março). Temperaturas máximas do ar em março de 31.01°C reduzem a produção do cafeeiro. Os modelos podem ser usados para previsão da produtividade do cafeeiro arábica auxiliando no planejamento dos cafeicultores da região do norte do Paraná.

Biografia do Autor

João Antonio Lorençone, Instituto Federal de Mato Grosso do Sul

Técnico agrícola e graduando de agronomia no Instituto Federal de Mato Grosso do Sul. Participa do grupo de pesquisa Recursos naturais e tecnologias agropecuárias (RENTA) do IFMS, desenvolvendo pesquisas nas áreas de agrometeorologia e modelagem agrícola. Possui experiência em feiras científicas, congressos e elaboração de artigos científicos. Experiência na área de design gráfico e produções audiovisuais. Representante do Mato Grosso do Sul no Parlamento Juvenil do Mercosul, mandato 2018-2020.

Lucas Eduardo de Oliveira APARECIDO, Instituto Federal de Mato Grosso do Sul

Prof.  Dr. do Instituto Federal de Mato Grosso do Sul, departamento de agrometereologia, Naviraí, Mato Grosso do Sul, Brazil.

Pedro Antonio LORENÇONE, Instituto Federal de Mato Grosso do Sul

Graduando em Agronomia pelo Instituto Federal de Mato Grosso do Sul, Naviraí, Mato Grosso do Sul, Brasil.

José Reinaldo da Silva Cabral de MORAES, Universidade estadual de São Paulo – Unesp

Msc. Doutorando em Produção Vegetal pela Universidade estadual de São Paulo – Unesp, campus Jaboticabal, Jaboticabal, São Paulo, Brazil.

Referências

ABDELAZIZ, A. et al. A machine learning model for improving healthcare services on cloud computing environment. Measurement, v. 119, p. 117–128, abr. 2018.

ABRECHT, D. G.; CARBERRY, P. S. The influence of water deficit prior to tassel initiation on maize growth, development and yield. Field Crops Research, v. 31, n. 1, p. 55–69, 1 jan. 1993.

ACEVES-NAVARRO, L. A. et al. Impact of climatic change on the adaptation of coffee (Coffea arabica L.) crops in Tabasco, Mexico. Agroproductividad, v. 13, n. 4, p. 53–58, 2020.

ALLEN, R. G. et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. v. 300, n. 9, p. D05109, 1998.

APARECIDO, L. E. DE O. et al. Agrometeorological Models for Forecasting Coffee Yield. Agronomy Journal, v. 109, n. 1, p. 249–258, 2017.

APARECIDO, L. E. DE O. et al. Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciência e Agrotecnologia, v. 40, n. 4, p. 405–417, ago. 2016.

BARBOSA, A. et al. Modeling yield response to crop management using convolutional neural networks. Computers and Electronics in Agriculture, v. 170, p. 105197, mar. 2020.

BORTOLOTTO, R. P. et al. Soil profile internal drainage for a central pivot fertigated coffee crop. Revista Ceres, v. 58, n. 6, p. 723–728, dez. 2011.

BROWN, J. N. et al. Seasonal climate forecasts provide more definitive and accurate crop yield predictions. Agricultural and Forest Meteorology, v. 260–261, p. 247–254, out. 2018.

CAI, Y. et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology, v. 274, p. 144–159, ago. 2019.

CAMARGO, Â. P. D.; CAMARGO, M. B. P. D. Definition and layout of phenological phases of Arabica coffee in tropical conditions in Brazil. Bragantia, v. 60, n. 1, p. 65–68, 2001.

CAMARGO, A. P. Zoning climatic fitness for Arabica and Robusta coffee farming in Brazil. In: BRAZILIAN GEOGRAPHY AND STATISTICAL INSTITUTE FOUNDATION. Natural resources, environment and pollution: contribution of a cycle of debates. Rio de Janeiro: SUPREN, v.1, p.68-76, 1977.

CAMARGO, M. B. P. D. et al. Agrometeorological model of yield estimation for the Valencia orange cultivar. Bragantia, v. 58, n. 1, p. 171–178, 1999.

CAMARGO, M. B. P. DE. The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia, v. 69, n. 1, p. 239–247, 2010.

CAMARGO, M. B. P. DE; BRUNINI, O.; MIRANDA, M. A. C. DE. Agrometeorological model for estimating productivity for soybean cultivation in the State of São Paulo. Bragantia, v. 45, n. 2, p. 279–292, 1986.

CARR, M. K. V. The Water Relations And Irrigation Requirements of Coffee. Experimental Agriculture, v. 37, n. 1, p. 1–36, jan. 2001.

CARVALHO, C. F.; CARVALHO, S. M.; SOUZA, B. Coffee. In: SOUZA, B.; VÁZQUEZ, L. L.; MARUCCI, R. C. (Eds.). . Natural Enemies of Insect Pests in Neotropical Agroecosystems. Cham: Springer International Publishing, 2019. p. 277–291.

CORNELL, J. A.; BERGER, R. D. Factors that Influence the Value of the Coefficient of Determination in Simple Linear and Nonlinear Regression Models. Phytopathology, v. 77, n. 1, p. 63, 1987.

CRAPARO, A. C. W. et al. Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, v. 207, p. 1–10, jul. 2015.

CRISOSTO, C. H.; GRANTZ, D. A.; MEINZER, F. C. Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology, v. 10, n. 2, p. 127–139, 1 mar. 1992.

DA GAMA, T. C. P. et al. Foliar anatomy, physiology and productivity of coffee trees at different levels of fertilization. Coffee Science, v. 12, n. 1, p. 42, 30 mar. 2017.

DAMATTA, F. M. et al. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. Journal of Agricultural and Food Chemistry, v. 66, n. 21, p. 5264–5274, 30 maio 2018.

DAMATTA, F. M.; RAMALHO, J. D. C. Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology, v. 18, n. 1, p. 55–81, mar. 2006.

DOORENBOS, J.; KASSAM, A. H. Yield response to water. [s.l: s.n.].

DUARTE, Y. C. N.; SENTELHAS, P. C. NASA/POWER and DailyGridded weather datasets—how good they are for estimating maize yields in Brazil? International Journal of Biometeorology, v. 64, n. 3, p. 319–329, mar. 2020.

HAJJAR, R. et al. Scaling up sustainability in commodity agriculture: Transferability of governance mechanisms across the coffee and cattle sectors in Brazil. Journal of Cleaner Production, v. 206, p. 124–132, jan. 2019.

HAMEED, A.; HUSSAIN, S. A.; SULERIA, H. A. R. “Coffee Bean-Related” Agroecological Factors Affecting the Coffee. In: MÉRILLON, J.-M.; RAMAWAT, K. G. (Eds.). . Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Cham: Springer International Publishing, 2020. p. 641–705.

HERNANDEZ-ESPINOZA, L. H.; BARRIOS-MASIAS, F. H. Physiological and anatomical changes in tomato roots in response to low water stress. Scientia Horticulturae, v. 265, p. 109208, abr. 2020.

BRAZILIAN GEOGRAPHY AND STATISTICS INSTITUTE. BGSI Automatic Recovery System - SIDRA: Municipal Agricultural Production. BGSI, 2018 Available at: <https://sidra.ibge.gov.br/home/pnadcm>. Access in: 28 maio. 2020.

IIZUMI, T. et al. Global crop yield forecasting using seasonal climate information from a multi-model ensemble. Climate Services, v. 11, p. 13–23, aug. 2018.

INTERNATIONAL COFFEE ORGANIZATION. Historical Data on the Global Coffee Trade. Available at: <http://www.ico.org/new_historical.asp>. Access in: 02 abr. 2020.

JAYAKUMAR, M.; RAJAVEL, M.; SURENDRAN, U. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India. International Journal of Biometeorology, v. 60, n. 12, p. 1943–1952, dez. 2016.

JERSZURKI, D.; SOUZA, J. L. M. DE. Parameterization of Hargreaves & Samani and Angströn-Prescott equations for solar radiation estimation in the region of Telêmaco Borba, state of Paraná. Rural Science, v. 43, n. 3, p. 383–389, mar. 2013.

KOGAN, F. et al. Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models. International Journal of Applied Earth Observation and Geoinformation, v. 23, p. 192–203, aug. 2013.

KRIGE, D. G. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, v. 52, n. 6, p. 119–139, 1 dez. 1951.

LÄDERACH, P. et al. Climate change adaptation of coffee production in space and time. Climatic Change, v. 141, n. 1, p. 47–62, mar. 2017.

LEE, J. H.; SHIN, J.; REALFF, M. J. Machine learning: Overview of the recent progresses and implications for the process systems engineering field. Computers & Chemical Engineering, v. 114, p. 111–121, jun. 2018.

LIAKOS, K. et al. Machine Learning in Agriculture: A Review. Sensors, v. 18, n. 8, p. 2674, 14 ago. 2018.

MARTINS, M. A. et al. Improving drought management in the Brazilian semiarid through crop forecasting. Agricultural Systems, v. 160, p. 21–30, fev. 2018.

MERLE, I. et al. Forecast models of coffee leaf rust symptoms and signs based on identified microclimatic combinations in coffee-based agroforestry systems in Costa Rica. Crop Protection, v. 130, p. 105046, abr. 2020.

MESQUITA, Carlos Magno de et al. Coffee manual: Coffea arábica L. coffee plantations. Belo Horizonte: EMATER-MG, 2016. 50 p. il.

MINUZZI, R. B.; CARAMORI, P. H.; BORROZINO, E. Trends in annual and seasonal climate variability of the minimum and maximum air temperatures in the State of Paraná, Brazil. Bragantia, v. 70, n. 2, p. 471–479, 2011.

MONTEIRO, J. E. B. DE A. et al. Modeling of corn yield in Brazil as a function of meteorological conditions and technological level. Brazilian Agricultural Research, v. 52, n. 3, p. 137–148, mar. 2017.

MORETO, V. B.; ROLIM, G. D. S. Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, São Paulo State region, Brazil. Acta Scientiarum. Agronomy, v. 37, n. 4, p. 403, 1 out. 2015.

MUHARAM, F. M. et al. Remote Sensing Derivation of Land Surface Temperature for Insect Pest Monitoring. Asian Journal of Plant Sciences, v. 16, n. 4, p. 160–171, 15 set. 2017.

NERY, J. T.; ROSEGHINI, W. F. F.; MARTINS, M. D. L. O. F. Characterization of Rainfall in the Northwestern Region of the State of Paraná. Geography Bulletin, v. 19, n. 1, p. 99–114, 2001.

PAGANI, V. et al. Forecasting sugarcane yields using agro-climatic indicators and Canegro model: A case study in the main production region in Brazil. Agricultural Systems, v. 154, p. 45–52, jun. 2017.

PORTUGAL, I.; ALENCAR, P.; COWAN, D. The use of machine learning algorithms in recommender systems: A systematic review. Expert Systems with Applications, v. 97, p. 205–227, maio 2018.

RAPOPORT, H. F. et al. Influence of water deficits at different times during olive tree inflorescence and flower development. Environmental and Experimental Botany, v. 77, p. 227–233, 1 abr. 2012.

RENA, A. B.; BARROS, R. S. Critical aspects in the study of coffee flowering. In: ZAMBOLIM, L. (Ed.). Effects of irrigation on coffee quality and yield. Viçosa, MG: UFV, 2004. p. 149-172

RIBEIRO, W. et al. Limitation of Relative Transpiration and Growth of Arabic Coffee in Response to Water Deficit. Journal of Experimental Agriculture International, v. 24, n. 1, p. 1–12, 21 jun. 2018.

RODRIGUES, W. P. et al. Stomatal and photochemical limitations of photosynthesis in coffee (Coffea spp.) plants subjected to elevated temperatures. Crop and Pasture Science, v. 69, n. 3, p. 317, 2018.

ROSA, V. G. C. DA et al. Estimation of coffee productivity based on an agrometeorological-spectral model. Brazilian Agricultural Research, v. 45, n. 12, p. 1478–1488, dez. 2010.

SAMPAIO, S. C. et al. Estimation and Distribution of Decay Precipitation for the State of Parana. IRRIGA, v. 12, n. 1, p. 38–53, 27 mar. 2007.

SANCHES, R. F. E. et al. Changes in carbohydrates accumulation in Viguiera discolor Baker in response to water deficit. Hoehnea, v. 46, n. 4, 2019.

SERRA, E. Coffee cooperatives of Northern Paraná: trajectory and evolution. Campo-Território Journal, v. 13, n. 29, p. 89–111, 30 abr. 2018.

SESSA FIALHO, G. et al. Behaviour of arabica coffee plants subjected to water deficit during initial development. Idesia (Arica), v. 28, n. 3, p. 35–39, dec. 2010.

SILVA, W. L. et al. Observed trends in climate extreme indicators of temperature and precipitation in the state of Paraná. Brazilian Journal of Meteorology, v. 30, n. 2, p. 181–194, jun. 2015.

SOUSA, P. DE; NERY, J. T. Analysis of annual and inter-annual rainfall variability in the region of Manuel Ribas, Paraná State. Acta Scientiarum. Technology, v. 24, p. 1707–1713, 2002.

STACKHOUSE, P. W. et al. Prediction of Worldwide Energy Resource (POWER)-Agroclimatology methodology-(1.0 latitude by 1.0 longitude spatial resolution). Prediction of Worldwide Energy Resource (POWER)-Agroclimatology methodology-(1.0 latitude by 1.0 longitude spatial resolution)., 2015.

TAIZ, L et al. Physiology and plant development. [s.l.] Artmed, 2017. v. 858

TAVARES, P. DA S. et al. Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Regional Environmental Change, v. 18, n. 3, p. 873–883, mar. 2018.

VOLSI, B. et al. The dynamics of coffee production in Brazil. PLOS ONE, v. 14, n. 7, p. e0219742, 23 jul. 2019.

WANG, X. et al. Impact of climate change on regional irrigation water demand in Baojixia irrigation district of China. Mitigation and Adaptation Strategies for Global Change, v. 21, n. 2, p. 233–247, fev. 2016.

WARD, J. H. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, v. 58, n. 301, p. 236–244, 1 mar. 1963.

WTO, W. T. O. Statistics on merchandise trade. Disponível em: . Acesso em: 28 maio. 2020.

Downloads

Publicado

05-05-2021

Como Citar

LORENÇONE, J. A.; APARECIDO, L. E. de O.; LORENÇONE, P. A.; MORAES, J. R. da S. C. de. PREVISÃO DA PRODUTIVIDADE DO CAFÉ COM BASE EM DADOS AGROCLIMÁTICOS E APRENDIZAGEM DE MÁQUINA / FORECASTING COFFEE YIELD BASED ON AGROCLIMATIC DATA AND MACHINE LEARNING. International Journal of Environmental Resilience Research and Science, [S. l.], v. 3, n. 1, 2021. DOI: 10.48075/ijerrs.v3i1.26255. Disponível em: https://saber.unioeste.br/index.php/ijerrs/article/view/26255. Acesso em: 4 nov. 2024.

Edição

Seção

Artigos